W29. (Solution by the proposer.) Since $x+y+z=1$, the given inequality may be written as

$$
\sum_{\text {cyclic }} \sqrt{\frac{x^{3}+1}{x^{2}-x+1}} \leq 3 \sqrt{2}
$$

Now, using that $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$, the inequality becomes $\sum_{\text {cyclic }} \sqrt{x+1} \leq 3 \sqrt{2}$. Finally, since function $f(x)=\sqrt{x+1}$ is concave because $f^{\prime \prime}(x)=\frac{-1}{4(x+1)^{3 / 2}}<0$, by Jensen's inequality, we have

$$
\frac{\sum_{\text {cyclic }} \sqrt{x+1}}{3} \leq \sqrt{\frac{x+y+z}{3}+1}=\sqrt{2}
$$

from where the result follows.

Second solution. We have

$$
\sum_{\text {cyc }} \sqrt{\frac{x^{3}+1}{x^{2}+y+z}}=\sum_{\text {cyc }} \sqrt{\frac{x^{3}+1}{x^{2}-x+1}}=\sum_{\text {cyc }} \sqrt{x+1}
$$

and since

$$
a+b+c \leq \sqrt{3\left(a^{2}+b^{2}+c^{2}\right)}, a, b, c \in \mathbb{R}
$$

then for $a=\sqrt{x+1}, b=\sqrt{y+1}, c=\sqrt{z+1}$ we obtain

$$
\sum_{\text {cyc }} \sqrt{x+1} \leq \sqrt{3 \sum_{c y c}(\sqrt{x+1})^{2}}=\sqrt{3(x+y+z+3)}=\sqrt{3 \cdot 4}=2 \sqrt{3} .
$$

Arkady Alt
Third solution. We have

$$
\begin{gathered}
\sum \sqrt{\frac{x^{3}+1}{x^{2}+y+z}}=\sum \sqrt{\frac{x^{3}+1}{x^{2}+1-x}}=\sum \sqrt{x+1} \leq \\
\leq \sqrt{3(x+y+z+3)}=2 \sqrt{3}<3 \sqrt{2}
\end{gathered}
$$

Nicuşor Zlota
and as addition to published solutions:
https://www.linkedin.com/feed/update/urn:li:activity:6517980571937972224
W29. Solution by Stéphane Jaubert.
With $x+y+z=1$ we have $x^{2}-x+1=x^{2}+y+z$
$x^{3}+1=(x+1)\left(x^{2}-x+1\right)=(x+1)\left(x^{2}+y+z\right)$
Therefore $\left(x^{3}+1\right) /\left(x^{2}+y+z\right)=x+1$ and then,
just apply Cauchy-Schwarz with LHS, we obtain:
$\sum \frac{x^{3}+1}{x^{2}+y+z}=\sum \sqrt{x+1} \leq \sqrt{(1+1+1)} \cdot \sqrt{(x+1+y+1+z+1)}=2 \sqrt{3}$.

